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Frank’s constant in the hexatic phase
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Using videomicroscopy data of a two-dimensional colloidal system the bond-order correlation function Gg is
calculated and used to determine both the orientational correlation length & in the liquid phase and the
modulus of orientational stiffness, Frank’s constant F,, in the hexatic phase. The latter is an anisotropic fluid
phase between the crystalline and the isotropic liquid phase. F4 is found to be finite within the hexatic phase,
takes the value 72/ at the hexatic <—isotropic liquid phase transition, and diverges at the hexatic < crystal
transition as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory. This is a quantitative test of
the mechanism of breaking the orientational symmetry by disclination unbinding.
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I. INTRODUCTION

The theory of melting in two dimensions (2D), developed
by Kosterlitz, Thouless, Halperin, Nelson, and Young
(KTHNY) has been a matter of debate over decades. In a 2D
crystal, the density-density correlation function is an algebra-
ically decaying function and is not given by a set of & peaks
as in a 3D crystal. This decay behavior indicates a quasi-
long-range translational order and is ultimately due to long-
wavelength fluctuations [1]. In the fluid phase then the trans-
lational symmetry is completely destroyed so that the
translational correlation function decays exponentially. This
implies a vanishing of the shear modulus.

According to Kosterlitz and Thouless, the phase transition
from the solid to the fluid phase is driven by the dissociation
of thermally activated dislocation pairs [2,3]. Nelson and
Halperin then showed that the fluid phase above the melting
temperature 7,, still exhibits quasi-long-range orientational
order with a sixfold director [4,5]. This anisotropic fluid
phase is called hexatic. The orientational correlation function
of the hexatic phase decays algebraically and is associated
with a nonvanishing elastic modulus of the orientational
stiffness. This modulus is Frank’s constant F.

At a temperature 7,>T,, the orientational symmetry
changes again which can be seen from the orientational cor-
relation function switching from an algebraic to an exponen-
tial decay. According to the KTHNY theory, this change is
the consequence of the emergence of a second class of topo-
logical defects, the disclinations, which occur as a result of
the dissociation of some of the dislocations. Finally, above T;
the fluid shows ordinary short-range rotational and positional
order as it is characteristic of an isotropic liquid.

Following an argument given in [2,5], T,, and T; can be
estimated using the defect interaction Hamiltonian H, be-
tween a pair of disclinations (d=disc) and a pair of disloca-
tions (d=disl) which for both defect pairs and at large dis-
tances goes like

BH;=cyInrlr,, (1)

with B=1/kgT, r. being the defect-core radius, and the di-
mensionless strength parameter c¢; depending on the defect
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type. Defect dissociation is completed at a temperature
where the thermally averaged pair distance
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diverges which is obviously the case if c;—4. Inserting
into c¢;— 4 the respective expressions for ¢, for d=disc and
d=disl, we are led to two unbinding conditions which are

lim BK(T)aj= 167 (3)
T—T,

m

for dislocation-pair unbinding and

lim BF,(T)=72/m (4)
T~>T’._

for disclination-pair unbinding. Here, B is 1/kgT, a, is the
lattice constant, and K stands for the Young’s modulus of the
crystal. These relations—connecting the two transition tem-
peratures 7; and T,, with macroscopic quantities characteriz-
ing the elastic properties of the system—reflect a universal
behavior of 2D systems independent of microscopic interac-
tions.

In this article we study the temperature dependence of
Frank’s constant of a 2D system in the hexatic phase. We
first determine the hexatic — isotropic fluid transition tem-
perature 7; and then check if Frank’s constant takes the value
72/ at T;, thus testing the KTHNY theory and its prediction
that disclination unbinding occurs at 7. In addition, we ana-
lyze the divergence behavior of the orientational correlation
length at 7; and of Frank’s constant at 7,,. To learn more
about the order of the transitions, we furthermore study the
probability distribution of the local bond order parameter.

Different theoretical approaches invoking grain boundary
induced melting [6,7] or condensation of geometrical defects
[8,9] suggest one first-order transition. However, some simu-
lations for Lennard-Jones systems indicate the hexatic phase
to be metastable [10,11]. The transition in hard-core systems
seems to be first order [12] probably due to finite-size effects
[13]. Simulations with long-range dipole-dipole interaction
clearly show second-order behavior [14]. Experimental evi-
dence for the hexatic phase has been demonstrated for col-
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FIG. 1. (Color online) Superparamagnetic colloids confined at a
water/air interface due to gravity (side view). A magnetic field H
perpendicular to the interface induces a magnetic moment m lead-
ing to a repulsive interaction. The curvature of the interface is regu-
lated by the volume of the droplet using a computer controlled
syringe. The set point is the projected size of the colloids giving
information about the position of the interface with respect to the
focal plane. Colloids appear smallest when in focus and larger out
of focus.

loidal systems [15-20], in block copolymer films [21,22], as
well as for magnetic bubble arrays and macroscopic granular
or atomic systems [23-27]. Still the order of the transitions is
seen to be inconsistent. The observation of a phase equilib-
rium isotropic/hexatic [18,22] and hexatic/crystalline [ 18] in-
dicates two first-order transitions. In our system we find two
continuous transitions.

II. EXPERIMENTAL SETUP

The experimental setup is essentially the same as in [28].
Spherical and superparamagnetic colloids (diameter d
=4.5 um) are confined by gravity to a water/air interface
formed by a water drop suspended by surface tension in a top
sealed cylindrical hole (8 mm diameter) of a glass plate; see
Fig. 1. A magnetic field His applied perpendicular to the
air/water interface inducing a magnetic moment M= XIjI in
each particle. This leads to a repulsive dipole-dipole pair-
interaction E,,,,, with the dimensionless interaction strength
given by

_ Emagn _ ﬂXsz(ﬂ'P)m - L

© kgT 4w kT Ty

)

Here p is the 2D particle density and the average particle
distance is a=1/+Vp. The interaction strength can be exter-
nally controlled by means of the magnetic field H; it can be
interpreted as an inverse temperature and controls the phase
behavior of the system.

The ensemble of particles is visualized with video micros-
copy from above and the signal of a charge coupled device
(CCD) 8-bit gray-scale camera is analyzed on a computer.
The field of view has a size of 835X 620 um? containing
typically up to 3 X 10° particles, whereas the whole sample
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contains about up to 3X 103 particles. In order to get the
size, number, and positions of the colloids the image is bina-
rized: The software recognizes areas of connected pixels
with respect to the background and the amount of pixels of
each connected area gives the size of the colloids and the
barycenter gives its position. The average projected size of
the colloids contains information about the vertical position
of the interface relative to the focus of the camera. If the
camera is moved in a vertical direction, particle images are
smallest in focus and larger out of focus. This information is
used to maintain a flat water surface by compensating for the
loss of water due to evaporation: A computer-controlled sy-
ringe driven by a microstage controls the volume of the
droplet and thereby the curvature of the interface. An active
regulation of the vertical camera position is overlayed to get
a completely flat surface. The set point is the number of
particles in the field of view chosen to reach a homogeneous
number density profile throughout the whole sample. Le., if
the interface is convex, particle density will rise in the
middle of the sample due to gravity. Then the camera is lifted
by a microstage; the interface gets out of focus which is
compensated by the regulation of the syringe and vice versa.
In this way fluctuations around the set point of particle num-
ber are suppressed below 1% and the largest observed
particle-density gradient in the horizontal plane is less than
1%. The latter is done by the variation of the inclination of
the whole experimental setup. The inclination is also con-
trolled actively by microstages with a resolution in the range
of a=5 urad. After several weeks of adjusting and equili-
bration this provides best equilibrium conditions for long
time stability. During data acquisition the images are ana-
lyzed with a frame rate of 250 ms and the coordinates of all
particles are recorded for every time step containing the
whole phase space information. The thermal activated out-
of-plane motion of the colloids is in the range of a few tenths
of a nanometer, so the ensemble is supposed to be an ideal
two-dimensional system.

II1. RESULTS

To set the stage we first visualize in Fig. 2 the three
phases and their symmetries by plotting the structure factor

1 e
S(q)= ]—V< > e-"f'<’a-’a')>, (6)

as calculated from the positional data of the colloids for three
different temperatures. Here, &, @’ run over all N particles in
the field of view and a time average is taken over 700 con-
figurations. In the liquid phase, concentric rings appear hav-
ing radii that can be connected to typical interparticle dis-
tances. The hexatic phase, on the other hand, is characterized
by six segments of a ring which arise due to the quasi-long-
range orientational order of the sixfold director [29]. In the
crystalline phase the Bragg peaks of finite width show up [1],
reflecting the quasi-long-range character of the translational
order in two dimensions.
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FIG. 2. Structure factor S(g) of our colloidal system at three different inverse temperatures I corresponding to the isotropic liquid phase
(I'=52.4), the hexatic phase (I'=59.6), and the crystalline phase (I'=61.0). The central cross is an artifact of the Fourier transformation

arising from the rectangle field of view.

A. Orientational symmetry

To quantify the sixfold orientational symmetry the bond-
order correlation function

Ge(r) = (WP Y (0)) (7

is calculated with ()= zpk——E %%k Here the sum runs
over the N; next neighbors of the particle k at position 7 and
0« is the angle between a fixed reference axis and the bond
of the particle k and its neighbor j. The average is not only
the ensemble average which is taken over all N(N-1)/2
particle-pair distances for each configuration (resolution dr
=100 nm) but also the time average over 70 statistically in-
dependent configurations. KTHNY theory predicts that

lim Gg(r) # 0

Ge(r) ~ 17
Gy(r) ~ ™%

crystal: long-range order,

hexatic: quasi-long-range order,

isotropic: short-range order.

In the hexatic phase 7, <<1/4 and takes the value 1/4 right at
T=T;. All three regimes can be easily distinguished in Fig. 3

showing Gg(r) for a few representative temperatures. Note
that G4(0) is not normalized to 1. In the crystalline phase
lim,_.G4(r) is connected to the shear modulus [5], so de-
creasing values of this limes for decreasing interaction
strength reflect the softening of the crystal due to phonons
and thermally activated but bound (virtual) dislocation pairs.

B. Correlation length

We next fit Gg(r) to 7~ and e™"% to extract 7, and & in
the isotropic fluid and the hexatic phase. The fits are per-
formed for radii r/a € {0...20} [30]. To check for the charac-
teristics of the orientational correlation function, the ratio of
the reduced chi-square x> goodness-of-fit statistic of the al-
gebraic (XZIg) and exponential (ngp) fit is shown in Fig. 4 as
a function of T" for three different measurements. For melt-
ing, a crystal free of dislocations was grown at high I and
then I' was reduced in small steps. For each temperature step
the system was equilibrated 1/2 h before data acquisition
started. This was done at different densities: melt_1 with av-
erage particle distance of a=11.8 um and melt 2 with a

1+
1 I @ L] [ ] L~~~ M
O O——O—~O—0O~-0-0-00
’ \ & O N
, '~ 1 i MMM
y ) MO FIG. 3. (Color online) Orientational correla-
V i M00g tion function Gg(r) as a function of the inverse
- temperature I" in a log-log plot. From top to bot-
Oy —o—T =200 tom: three curves for the crystalline phase show-
© -1 9 - . . .
O ] o—r=100 ing the long-range orientational  order
;:g;g [lim,_,.Gg(r) #0], two curves showing the
I‘; 58.0 quasi-long-range order of the hexatic phase
T = 53:6 [Ge(r) ~ 6], and.three curves shov.ving. tl?e
——T=499 short-range /or(t;lizr typical of the isotropic liquid
—v—T =430 [Go(r) ~e7"e6D].
A
1 5 6 7 8 9 10 20 30

rla

031402-3



KEIM, MARET, AND VON GRUNBERG

2.00 -
O a2 R
175 - a X aIg/x apfreeze
2 2
= xalg/xwmeng
2 2
i o 2
1504 @ q o X gl X g™
&
w 8125 = = =
K
i=)
Y
1.00 |:|= &
= U omg g E.E
E, =
0.75-
0.50 +———+——+———1——F——1——1——T——1——
52 53 54 55 55 57 58 59 60 61 62
I~1/T

FIG. 4. (Color online) Quantitative test for the long-distance
behavior of Gg(r). For deg/ X?Xp< 1 the algebraic decay fits better.

=14.8 wm containing 3200 and 2000 particles, respectively,
in the field of view. The measurement denoted “freeze” in
Fig. 4 (a=11.8 um) started in the isotropic liquid phase and
I' was increased with an equilibration time of 1 h between
the steps. For Xilg/ ng >1 an exponential decay fits better
than the algebraic and vice versa for )(Z,g/ Xpr< 1. We ob-
serve in Fig. 4 that the change in the characteristic appears at
I';)=57.5£0.5. This value is the temperature of the
hexatic < isotropic liquid transition.

In the vicinity of the phase transition, approaching I';
from the isotropic liquid the orientational correlation length
& should diverge as [5]

b
b e

F —~ .
&) e"p<|1/r—1/ri|v

with b a constant and v=1/2. This behavior is observed in
Fig. 5(a). & indeed increases dramatically near I
=57.5+0.5 irrespective of whether the system is heated or
cooled. Before discussing this feature we first address the
finite-size effect. To this end, we have computed G(r) and &
for subsystems of different size, 720X 515 um?, 615
X 405 um?, 505X 300 wm?, 400X 190 wm?, and 390
X 80 um?. The resulting data points are plotted as triangles
in Fig. 5 and belong to the black solid squares which they
converge to. No finite-size effect is found for I' <56, but a
considerable one at I'=56.9 close to I'; where we obviously
need the full field of view to capture the characteristic of the
divergence. At I'=58.0 there is a huge finite-size effect indi-
cating that &g is much larger than the field of view. However,
inside the hexatic phase, & is no longer well defined as the
decay is algebraic. We fit our data to Eq. (8) in the range
49<I'<57.5 with T'; and b as fit parameters and find T
=58.9+3.1, a value which due to the finite-size effect is
larger than I'; obtained from Fig. 4.
The exponent 7 is related to Frank’s constant F [5]:

18Kk,T
I= ) 9

76(I") 7F () )

So the critical exponent 7(I";)=1/4 corresponds to

BF4(I';))=72/7 at the hexatic « liquid transition. This quan-
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FIG. 5. (Color online) Correlation length & (a) and Frank’s
constant F, (b) as a function of the inverse temperature. & diverges
at I'; and F, at I',,. In between the system shows hexatic symmetry.
The solid lines are fits to Egs. (8) and (10). Triangles are shifted by
0.1T" for clarity.

tity is plotted in Fig. 5(b). Indeed, F4 crosses the value 72/
at I';=57.5+0.5 exactly at that temperature which in Fig. 4
has been independently determined to be the transition tem-
perature T;. For I'<T';, F, should jump to zero which is not
completely reproduced. We note that since 7, is not well
defined in the isotropic fluid, it becomes problematic to ex-
tract F, from Eq. (9) below I, At I',, at the hexatic
—crystalline transition, F, must diverge which indeed it
does. This divergence can be identified with the divergence
of the square of the translational correlation length &, [5]:

2—6) (10)
|1/T =T, ")

Fy(D) kT ~ & ~ exp<
where ¢ is again a constant and the theoretical value of the
exponent is v=0.369 63. Fitting the values of F, to the ex-
pression in Eq. (10) in the range 57.5<I'<61 with I',, and ¢
as fit parameters we obtain I',,=61.4+1.9 as an upper thresh-
old. Again triangles represent evaluation of our data in sub-
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FIG. 6. (Color online) Probability distribution mg of the local
bond order parameter: deep inside the crystalline phase (squares),
crystalline phase close to I',, (circles), two curves for the hexatic
phase (triangles), isotropic phase close to I'; (crosses), and deep in
the isotropic phase (diamonds).

windows of variable size (same sizes as above). The finite-
size effect for I'=57.0 is negligible. Close to I',, it increases
but the values saturate for '=59.1 and I'=60.8 and remain
within the error bars for the largest subwindows. We do not
find strong fluctuations of the correlation length near the
transition points as observed in [22] where these fluctuations
are interpreted as being a consequence of phase separation.
Since the hexatic phase is a solid with respect to rotational
forces, the fluctuations could possibly result also from the
orientational polycrystallinity of the samples.

C. Local bond-order field

To get further insight into the local symmetry we focus on
the magnitude of the local bond-order parameter,

me, = |- (11)

me, can be considered as a measure quantifying the extent to
which the bonds between particle k and its neighbors agree
with the links between sites of a space-fixed hexagonal lat-
tice. mg, is zero for perfect fivefold or sevenfold particles and
one for perfect sixfold ones. Figure 6 shows the distribution
of mg for various temperatures, both close to and far away
from the phase transitions. The well-pronounced maximum
deep inside the crystalline phase for particles with sixfold
symmetry decreases for decreasing I'. This corresponds to
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the increase of particles contributing to topological defects as
determined by analysis of the nearest-neighbor statistics
(~2% at I',, and ~10% at I';). An equally meaningful mea-
sure for quantifying the local symmetry is the magnitude of
the projection of ¢, onto the mean local orientation field,

wZiE o, (12)

N/

l’l6k =

where all particles with index [ are neighbors of particle k.
ne, takes also the second nearest neighbors into account and
quantifies how good the orientation of particle k fits into the
local hexagonal symmetry as defined by the orientation of its
neighbor particles. Since it is a projection, e, <M. And
furthermore ng, + Mg, < 2. Figure 7 shows the probability dis-
tribution in the mg-ng plane for the same temperatures as in
Fig. 6. In [31] areas of mg+ng>1 (upper right corner) were
used as empirical criteria for crystal-like particles. If one
would expect phase separation as a sign for first-order tran-
sitions [18,22], a bimodal probability distribution for fluid-
like and crystal-like particles should appear. This is definitely
not the case here. No such bimodal distribution is observed;
nor can we find any qualitative changes of the local bond-
order field, neither above nor below I'; and T',,. This obser-
vation points to two continuous phase transitions.

IV. CONCLUSION

In conclusion, we have checked quantitatively the change
of quasi-long-range to short-range orientational order and ex-
tracted the correlation length & in the isotropic fluid and
Frank’s constant F, in the hexatic phase from trajectories of
a 2D colloidal system. We find a hexatic < isotropic liquid
transition at [';=57.5+0.5. Three observations support this
result: (i) the change of the distance dependence of G(r)
(Fig. 4), (ii) the condition F,(I';) =72/ for Frank’s constant,
and (iii) the divergence of &;. For the transition
hexatic < crystal F, diverges at I',,. Both divergencies (ex-
tracted from just one correlation function) are in agreement
with the KTHNY theory. The measurements for melting and
freezing support each other, so we may conclude that there is
no hysteresis effect of the phase transitions. At the two tran-
sitions, the order parameters are observed to change continu-
ously (within the resolution of I"ec 1/T) and no indication of
a phase separation (like strong fluctuations of the order pa-
rameters or heterogeneous probability distributions of the lo-
cal bond-order parameter) has been found [32]. So we be-
lieve that in our system—having a well-defined, purely

I'=627 =100

FIG. 7. Gray-scale image (a.u.) of the probability distribution of the magnitude of the local bond-order parameter mg versus the
magnitude of the projection of mg to the mean of nearest neighbors ng for the same temperatures as in Fig. 6. The probability distribution
changes continuously at both phase transitions and no bimodal distribution can be found.
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repulsive pair potential and a confinement to 2D that is free
of any surface roughness—the transitions are second order.
In [33,34] we showed that the Young’s modulus becomes
167 at T,,, implying that the dislocation unbinding condition
is satisfied at 7,,. We also showed that the softening is indeed
due to the dislocation pairs in the crystalline phase and that
this softening is well described by the renormalization equa-
tions of Halperin, Nelson, and Young. But this alone does not
suffice to rule out an alternative melting scenario [6,7] where
dislocations arrange themselves in grain boundaries, destroy-
ing the orientational symmetry before a disclination unbind-
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ing appears. We have now completed the picture by checking
the disclination unbinding condition. We indeed found that
F, takes the value 72/ at T;. This now fully confirms the
microscopic scenario of Halperin and Nelson and suggests
that the orientational symmetry changes at 7; because of
disclination-pair unbinding.
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